称为k介子),但在弱相互作用的环境中,它们的运动规律却不一定完全相同’。
也就是说,“θ-t”粒子在弱相互作用下是宇称不守恒的。
这个研究成果刚刚出现的时候就饱受质疑,因为科学界追求完美的,就像是很多数学家追求数学的完美一样,许多物理学家都相信,微观粒子世界的宇称是守恒的。
“θ-t”粒子,即便被证明宇称不守恒,也只是被作为一个特殊例外。
后来著名的实验物理学家吴健雄,用一个巧妙的实验验证了“宇称不守恒”,她在极低温下(001k以下)用强磁场把一套装置中的钴60原子核自旋方向转向左旋,把另一套装置中的钴60原子核自旋方向转向右旋。
这两套装置中的钴60互为镜像。
实验结果表明,两套装置中的钴60放射出来的电子数有很大差异,而且电子放射的方向也不能互相对称。
从此,“宇称不守恒”才真正承认。
这一条定律对于粒子物理学和宇宙学有重要影响,也开辟了对称性破缺和基本粒子物理学等领域的新研究方向。
宇称不守恒,已经成为了一条物理定律。
过去的研究都是以‘宇称不守恒’为基础所做的研究,就像是粒子标准模型的塑造,宇称不守恒就是理论基础之一。
陈蒙檬和丁志强的研究,则是粒子边界和‘宇称不守恒’的关联,直白来说,就是以‘能量素数化’的模式下,去塑造粒子边界来解释为什么会出现‘宇称不守恒’问题。
这就是更加深入的理论物理研究了。
“如果能完成这个论证,就能粒子震颤问题,也能够解释,为什么科学无法制造出绝对零度。”
“到时候,你们的研究就完善了。”
“那将会成为一个系统化的理论,可以命名为《能量素数化:粒子边界理论》。”
……
王浩对于两个学生的研究非常期待。
同时,他也做了一点工作,就是给出能量素数化的定义,来打好理论的前置基础。
能量素数化,是个非常好的想法,但‘能量是否能素数化’,肯定会引起一系列的争议。
如果能量素数化的前置,违背一些确定的物理,后续的解析再精彩也没有意义。
“首先,是单独的素数能量不能够被湮灭。”
“湮灭只能针对素数节点、微小的质量点,而不是分散的单独素数。”
“其次,素数能量不能够单独大密度存在,超越临界线的密度必须要依托质量点或粒子而存在,否则就会快速消散。”
“素数能量的消散,并不是被湮灭,而是像粒子湮灭一样,会以光速形式快速分散到宇宙空间中,最终形成宇宙空间的均衡态势(宇宙微波辐射背景)。”
“……”
王浩思考着做了基础定义。
这些定义和现有的物理都不冲突,一部分则融入到宇宙膨胀论的体系中,就可以支持能量素数化的基础存在。
“如果能完成相关的论证,很多现有的理论都可以以此进行修正,再结合海伦和保罗的研究……”
“或许可以开始论证电磁力了?”
“只是不知道,海伦和保罗有没有类似于‘能量素数化’的绝妙想法……”
王浩思考的摇摇头。
他还是把理论工作交给了其他人,自己则继续专注于实验和技术研究,只是湮灭力场实验组的工作就已经够忙碌了。
另外,核聚变工程项目组的事务也多了起来。
作为核聚变工程项目组的总负责人,王浩主要负责带队攻关关键技术,或者是解决那些其他人无法解决的问题。
随着项目基地的材料、设备到位,基础的建造工作结束,工程项目也正式开始。
很多设计中的部件、模块,都进入到制造、测试中。
王浩每天都要看大量的报告,还有一些很重要的实验数据,后来干脆决定跑一趟实验基地,现场去看看工程项目进展。
于此同时。
国际上发生了一个大事件。
阿迈瑞肯著名的能源公司倍因宣布成功制造出了超导电池,新的超导电池重量只有七吨,可以支持大功率输出,并安装在飞行器上使用。
一些媒体做报道,并分析指出,“这也就意味着‘阿迈瑞肯式飞碟计划’已经提上日程。”
“阿迈瑞肯拥有横向反重力技术,差的就只是能源,而倍因公司的成果很及时,他们就可以订购倍因超导电池,来制造出属于阿迈瑞肯的反重力飞行器(飞碟)。”
这个消息足够劲爆。
之前就只有种花家制造出了反重力飞行器,其他国家的技术则严重受限,限制最大的地方就是能源动力。
也就是,超导电池。
现在倍因公司成功制造出来,也就代表他们很快就可以开启‘阿迈瑞肯式飞碟建造项目’。
草小说